

An Energy Efficiency Workshop & Exposition Palm Springs, California

Energy vs. Customer Service

George "Buster" Barksdale SAIC Eric Oliver
EMO Energy Solutions, LLC

Tuesday, June 4, 2002

Agenda

- Background
- Lighting
- Outdoor Air
- □ Temperature
- Systems
- Controls
- Responsiveness

June 2 -5,2002

 $www.\,energy 2002.ee.doe.gov$

Background

- How Many Engineers Were Fired for Over Designing?
 - > Too much light
 - Too large boiler
 - Too large chillers
- Which way do you Err toward?

June 2 -5, 2002

www.energy2002.ee.doe.gov

_

The Dilemma - Balance

Overlit

Underlit

June 2 -5, 2002

www.energy2002.ee.doe.gov

Lighting

Energy Savings vs Lighting Quality

June 2 -5, 2002

www.energy2002.ee.doe.gov

Too much lighting

- Excess Energy
- Glare
- Reflections
- Headaches
- Overheating

June 2 - 5, 2002

www.energy2002.ee.doe.gov

0

Right approach for lighting

- Evaluate
- Limit Lighting to Tasks vs Area
- Day Lighting
- Control
 - > Dimmers
 - Day lighting stats
 - Occupant sensors

June 2 -5,2002

 $www.\ energy 2002.ee. doe.gov$

Outdoor Air

Energy vs Outdoor Air

June 2 -5, 2002

www.energy2002.ee.doe.gov

11

Outdoor Air History

- □ 1865 1905 Only for Infection Control
 - > 25 30 cfm per person
- □ 1936 Odor Control
 - > 10 15 cfm per person
- □ ASHRAE 62-1981 to curb over ventilation
 - Minimum 5 cfm per person
- ASHRAE 62-1989 in response to sick building syndrome
 - ▶ Minimum 15 cfm per person
- □ ASHRAE 62-1999 increased OA more
 - ▶ 15 20 cfm per person (based on building type)

June 2 -5,2002

www.energy2002.ee.doe.gov

Outdoor Air Why is it Important?

- Health
 - > Millions affected annually
 - > Billions in insurance and compensation
- Productivity
 - > 1.2 to 1.9 days more sick leave with lower ventilation rates
- Perception- Stuffy or Stale Air

June 2 - 5, 2002

www.energy2002.ee.doe.gov

13

Outdoor Air

- ASHRAE 62-1981-1999 increased OA cfm from 5 cfm/person – 20 cfm/person
- Jan 2000 EPA study "Energy Cost and IAQ Performance of Ventilation System and Controls" (EPA 402-S-01-001D)
 - > 1% to 4% increase in total energy consumption for 20 cfm/person vs. 5 cfm/person
 - Up to 8% increase for very high density buildings

June 2 - 5, 2002

www.energy2002.ee.doe.gov

Outdoor Air

- Conditioning air approximately 50% of a buildings energy consumption
- Most Space is Still Over-ventilated
- How do you use CO2 monitors to maximize the savings?

June 2 -5, 2002

www.energy2002.ee.doe.gov

15

Temperature

Energy Savings vs Space Temperature

June 2 -5, 2002

www.energy2002.ee.doe.gov

17

Temperature

- □ Originally 68 and 75 degrees
 - Mostly never followed or enforced
- □ Set Point 72 degrees Year-round
- Balance system vs response and change
 - Placebo thermostats
 - Overriding systems
 - Space Heaters

June 2 -5, 2002

 $www.\,energy 2002.ee.doe.gov$

Systems

Energy Savings vs Systems Employed

June 2 -5, 2002

www.energy2002.ee.doe.gov

19

Systems

- □ 2 pipe
- □ Floor Plenum
- □ 4 pipe
- □ VAV
- Geothermal

June 2 -5,2002

 $www.\ energy 2002.ee. doe.gov$

Life Cycle vs First Cost

- Beyond Basic Prescriptive
 - Less Lights Smaller Chiller
 - > Higher Gas Rates More Insulation
- Design for Life Cycle Costing Cost More
- Justify Life Cycle over First Cost for OMB
- □ Find the Additional Funding if Required

June 2 -5, 2002

www.energy2002.ee.doe.gov

Controls

Energy Savings vs Control Systems

June 2 -5, 2002

www.energy2002.ee.doe.gov

23

Controls

- Majority of Energy Usage Problems Centers on Information and Control
- Direct Digital Control (DDC)
 - Include in all new and retrofit buildings
- Energy Management System (EMS)
 - > Put in with new groupings or tie to existing
- Enterprise Management Software
 - > Tie DDC, meters and EMS together

June 2 -5, 2002

 $www.\,energy 2002.ee.doe.gov$

Controls Applications

- Demand Limiting
- Night Setback
- Night Shutdown
- Hot/Cold Deck Resets
- Outdoor Air Temperature Resets
- $\hfill\Box$ Minimize Outdoor Air Unoccupied
- Customer Involvement

June 2 -5, 2002

www.energy2002.ee.doe.gov

25

Controls Applications

- Demand Control Ventilation (DCV)
- □ Heat Recovery
- Economizer Control
- Bundling ECMs with increased OA

June 2 -5, 2002

www.energy2002.ee.doe.gov

Responsiveness

Energy Savings vs Customer Responsiveness

June 2 -5,2002

www.energy2002.ee.doe.gov

27

Eliminate Temporary Fixes

www.theinbrella.com

June 2 -5,2002

www.energy2002.ee.doe.gov

Poor Management and Control

- Complaints
 - > Management Involvement
 - > Supervisor Involvement
- Responses to Calls
 - Travel Time
 - > Evaluation Time
 - > Return and Recovery Time
- Customer Interference
- Customer Perception

June 2 -5, 2002

www.energy2002.ee.doe.gov

20

Good Management and Control

- Proactive control and enterprise management
- Good commissioning and recommissioning
- □ Aggressive PM Program

June 2 - 5, 2002

www.energy2002.ee.doe.gov

Summary

Standard	Optimal
No Energy Manager	Qualified Energy Manager
Decisions based on First Cost	Decisions based on lowest Life Cycle Costs
Attention solely on Safety and Health	Balanced Approach
No integrated Controls	Practice Control System
Least Effort to accomplish design	Additional effort (cost) up front

<u>Results</u>

- Most Cost-effective design
- Maximum comfort for occupants
- Increased Productivity

June 2 -5, 2002

www.energy2002.ee.doe.gov